AD-A142 392 A PROBLEM EXPRNDING PARAMETRIC PROGRAMMING HETHOD FOR
SOLYING THE JOB SHO.. (U) CARNEGIE-MELLON UN
PITTSBURGH PA MANAGEMENT SCIENCES RESERR. .

UNCLRSSIFIED G L THOMPSON ET AL. APR 84 MSRR-508 F/G S/1




—

*
4;
B
MN
o
E.- 3
i
(4]

ll

S
S
N

g

rr
r
re
[
B
],N
o

lI=

s

=

NN

= ||

I

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS -1963 - A

.. - -
. ST
. et

)

St et e e T e
a’ae%eat T et a4t A &AL

- v, '~-.' (PR . e v, " .
e o e R

ST W N W

PO B I ]

t At
2 as,



AANAS L ML Y AU ARG AP S 2 L e a sk el S od Sl S 4L A f;‘

/A

| .

A PROBLEM EXPANDING PARAMETRIC
PROGRAMMING METHOD FOR SOLVING THE
JOB SHOP SCHEDULING PROBLEM

by
Gerald L. Thompson
and

Daniel J. Zawack

Anvri 1 1QR/A

o Carnegie-Mellon University

o PITTSBURGH, PENNSYLVANIA 15213

w5

i GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION

WILLIAM LARIMER MELLON, FOUNDER

s 7
2

DTIC

\ELECTE
. JUN26 1984

W’"' e
AT B

AR

N 80y, ‘o.‘; A
> l..
P AL

f
L

OTIC FILE COPY

19

-~

10 DISTRIBUTION STATEMENT A
oo .

NG Approved for public releasey
-'-"i i Distribution Unlimited

-“
3

L S T S S D T A SN I S I S BN . N
. ! . - r - K { ST - .) ~ SR R ) - CHRS R e P SR
N o S R R R R SR YA S I T




" Wﬂv‘w?‘?‘ﬁwﬁvrﬁrv‘ﬁ DAL AN AV S S 5 2 e o o |
e . - A A AL AN SO - DA LT

A
t

-~

oo Management Science Research Report No. MSRR 500
Ol

-r::'-: _
S A PROBLEM EXPANDING PARAMETRIC

;:?.j PROGRAMMING METHOD FOR SOLVING THE

| JOB SHOP SCHEDULING PROBLEM

S

gy by

- Gerald L. Thompson

S

v and

f:j::: Daniel J. Zawack

T April 1984
‘ .

-{:::

o
o
TAY
Lok
e

T
:::':' This report was prepared as part of the activities of the Management Science
Research Group, Carnegie-Mellon Universityv, under Contract No. N00014-82-K-0329
: NR 047-048 with the U. S. Office of Naval Research. Reproduction in whole or
o in part is permitted for anv purpose of the U.S. Government.

:-::: Management Sciences Research Group

o Graduate School of Industrial Administration
e Carnegie-Mellon University

'; Pittsburgh, Pennsylvania 15213 D I I( :
% ELECTE
o e - h  JUN
..}-::I DISTRIBUTION STATEMENT A £ 2 61384 ,\-_
o Approved for public raleasel %’
Distribution Unlim:ted : B

.:7 —— R )
P
oo




4
- 4
' .
l._ -.J
:g A PROBLEM EXPANDING PARAMETRIC PROGRAMMING METHOD j
p -
t FOR SOLVING THE JOB SHOP SCHEDULING PROBLEM "
\ :
N by 3
S ¥
'q Gerald L. Thompson and Daniel J. Zawack
/ ABSTRACT
:3 7’A new zero one integer programming model for the job shop scheduling
\: problem with minimum makespan criterion is presented. The algorithm consists
?
\ of two parts: (a) a branch and bound parametric linear programming code for
&
tj solving the job shop problem with fixed completion time; (b) a problem ex-
FY
S panding algorithm for finding the optimal completion time.
- Computational experience for problems having up to 36 operations is pre- 5
2 sented., The largest problem solved was limited by memorv space, not computa- d
¢ 3
. tion time. Efforts are under way to improve the efficiency of the algorithm 4
) and to reduce its memory requirements. ¢ ;
/ -
e <4
~: -‘
3
S 4
& 4
o ) i 1
b Lo . K:J 1
_| PonTl ‘ 4 q
- KEY WORDS: R . g
?f job shop scheduling algorithm ! ;
: ; fﬂr /.m 50—— ,
2 branch and bound ; ] f
: o : "'/ _
. zero one integer program ; Aot iiite foces
o parametric linear programming ot I
'.1 [N SIRA .A”..I L
i problem expansion /: |
A
. | |

“ %l

CR - - e .-
-, ..'-_ - PR
> Y .

AV P T W P LSRR P e e e N N e e T T N
N v ¥ L IR UT B N IR AR A . 5 T P N D P P A NI N N,



1. INTRODUCTION

The literature on the job shop scheduling problem is extensive. Some
well known books devoted entirely to scheduling problems are: Muth and
Thompson [11], Conway, Maxwell, and Miller [6], and Baker [l1]. More recently
an easy to read introductory text by French {[7] has appeared and an in depth
survey of the mathematics of job shop scheduling is given by Bellman, Esogbue
and Nabeshima [4].

There are three well-known mathematical programming models for solving
the job shop scheduling problem under the minimize makespan criterion. The
first to appear was by Bowman {53]. It was very cumbersome and no computational
testing of it has ever appeared in the literature. The second model was given
by Wagner [l4]. Story and Wagner [ll] provided the only computational testing of
the Wagner model and concluded that it could not be relied upon to find optimal
solutions. The third model was stated as a general mixed integer program by Manne
{10] and this has become the most common notational representation of the problem.
Of the three models, Manne's is the most economical in terms of number of variables
and constraints., Unfortunately, its application has not yielded any signifi-
cant computational success. Balas [3] has shown that the linear programming
relaxation of this model is generally quite weak implying that often a large
gap exists between the linear programming optimum and the integer programming
optimum. Closing this gap is computationally very expensive. Balas [2]
recognized that the Manne formulation is a disjunctive program and has applied
disjunctive programming methods to strengthen the formulation [3], but no com-
putational experience with this has been reported.

In this paper a new model for solving the job shop scheduling problem

under the minimal makespan criterion is presented. It is a pure zero-one

-------- e T et T e ot Tl et et ettt e e et 1
DS SR S TR P T N P S S S S T S S R



Pt
. ..' _'4

10

s B At e
-’-IIIA’I.‘A)A«

‘s

e
.

.

-

AL S N T T e P R AP AR Rl S L S S S

WS W N, T W V& e, T e " s = - -
. “'v;—;r ;‘1-‘ --w.-. .‘—1\‘ ":‘l"'_.\‘ ‘-v _‘»“‘. . ) ~" ™ '~‘ - ) . R . ]

mathematical program, in which a zero-one variable x(j,t) is set equal to 1 if
operation j starts its uninterrupted processing period at time t and is zero
for all other times. These variables are used to construct a model which admits
only schedules whose completion times are no greater than some prespecified
horizon time. The model is embedded in an algorithm whose approach is to start
with a known schedule which completes by time T, Then an instance of the model
is solved which admits only schedules completing by time T-1. Solving this
model means finding a schedule completing by time T-1 or proving that none
exists. The model is solved by applying parametric linear programming techniques
in the context of a branch and bound search. When it can be shown that no schedu
exists for some completion time T-1 then the previously found solution at T

is optimal.

If a horizon shortening technique is to be efficient then it is important
for the initial value of T to be a good upper bound on the optimal value. In
order to obtain good upper bounds a problem expansion technique is utilized
which ylelds a good upper and lower bound in each stage of the expansion process.

The problem is defined and notation given in Section 2. 1In Section 3
the model is given and in Section 4 a parametric linear programming procedure
for its solution is discussed. In Section 5 the problem expanding technique
is defined. The algorithm has been implemented and preliminarvy computational
experience is presented in Section 6. Finally, in Section 7 conclusions as to
the computational potential of this method are stated and areas for potential
improvement of the method are noted.

2. THE JOB SHOP SCHEDULING PROBLEM
The general job shop problem can be stated as follows. There are a set

of I items numbered from 1 to I that have to be processed on M machines

RO LY s

le

-.'
~
i S




i
LR R

v

R

)JJ.JJJ

XXV

AN A A

. 9 1]
.

PR

nY

-

<N

which are numbered from 1 to M. The production of item i requires a

sequence of s, operations. The operations are indexed according to the fol-

lowing scheme. Let ng = 0, and index the operations for item i consecutively
from n +1 to n, where n, = + . For each i i e ., = n

i-1 i j =0y q *s;. Foreac tem i let b1 i1t
Let the total number of operations be N so that n, = N. There are precedence

relationships between the operations on each item which are incorporated in the
indexing scheme in the following way. If j and k are indices of operations
on item 1 and if j<k then operation j must be performed prior to the start
of operation k. Each operation j must be performed on a specified machine
q(j). Define the set of operations on machine m to be Jm) = {jlq(j) = m}.
Finally each operation 3 requires time d{(j) to complete. The objective of
the formulation to be discussed is to find a processing order on each machine
such that all operations are completed by time T.
The precedence relations between operations imply the existence of a lower
bound on the start time of any operation. The early start time for operation j
j-1

on item 1 can be expressed as Ej = T d(k). By convention, if the sum is
k=b,
i
empty its value is zero. The precedence relations in combination with the
required completion time T also establish an upper bound on the start time of

any operation. The latest start time for operation j on item i can be ex-

n
pressed as L, =T- I d(k). Note that for each operation j on item 1
k=j ni
the difference Lj - Ej = T - £ d(k) which is a constant.
k=b,
i

In order to complete all operations by time T three conditions must
be satisfied. First each operation j ¢ N must begin its uninterrupted
processing period between Ej and Lj’ inclusive. Second, operation j on

item 1 cannot begin until all of its predecessor operations on item i are

N

LT T e gt et e T e e

R DIPTSRt e

PR Y

)
A

_J.

| PR

n
et et mtmt o

Py BRS

—t el

:

-3 D R o i)

. -~ I )
od e adod s A Ao A S

oo

ik Baadtate

.
a3 3 W ey

¢ e
4 a o Al

A



completed. The third condition is that at most one operation can be performed
by a machine during any time period.
3. THE MODEL

These conditions are stated notationally in an integer constraint set.

The zero-one variables are X(j,t) where

1 if operation j begins at time ¢t

X(3,t) =

0 otherwise.

The constraints which require that operation j be performed are

Ly

¢h) I X({F,t) =1 for j = bi""’ni’ i=1,2,...,I.
t=E,
3

The second class of ceomstraints requires that the precedence relations

are satisfied for each related pair of operations. The constraints of this

group take the following form

k k+d (3)
(2) - I XG-1,t) + I X(@,t) S0 fork=E
E t=Ej l+d (&P)

.»L

j_l"' j_l,

ji= bj +1,...,n i=1,...,I.

i,

These constraints state that operation j cannot start until operation j-1
has been completed. They also allow operation j the freedom to start in
any feasible time period after operation j-1 1is complete.

The third group of constraints guarantees that during a time period p at
most one operation is assigned to a machine. There will be a constraint in

this group for each period p 1in which the machine m mav be in operation.

The potential periods in which a machine m may be operating are specified as




follows. The earliest time that machine m may begin operating is at the

Bdd

earliest start time of anv operation which must be processed on machine m.

Let the early start period of m be Sm where

Sm = uin E, .
jed(m) 3

The last period in which machine m may be operating is the latest period during

which any operation which must be processed on machine m mayv still be under-

going processing. Ler the last operating period of machine m be Fm where !
F = max {L, +d(j) -1} )
m . y

jeJ(m)

The set of machine constraints is

d(3) 1
(3) z Z X({,t+p-d(§)) S 1 for p = Sm,...,Fm, m=1,...,M. ]
jeJ(m) t=1 1

The inner sum over the indices t =1,...,d(j) implies that if operation
j were to start being processed on machine m at some time in which its un-
interrupted processing period would include period p then this operation will
occupy machine m at that time. The outer sum over the index set jeJ(m) in- ‘
cludes all operations j on machine m that might under go processing in
period p. Since the right hand side is one at most one operation of those
potentially available can be in process on machine m in period p.

4, PARAMETRIC LINEAR PROGRAMMING SOLUTION METHOD

Any zero one solution satisfying (1), (2), and (3) for an associated

job shop scheduling problem provides a feasible schedule which completes by

Py

4;= time T. 1In order to find such a feasible schedule it would be desirable

to find an objective function which could be imposed on the problem

---- e« . e . . . S T T S S
e e T e e o e

RO N P IR I . i A IR SR PR NI D R I ., IR I A T Dt Y



o
‘.
.-_;.

v,
.
s

P

L
o
a a0 J

P A4
Y

0

A

x.7
'l s
L,

¥R

-
L X8

Sy

S

.
[V N RN

v
3
r)

3
»

St Rt

Ry

-

e

o ne B i e o B Tl At BATRRA T B RA A SR O SV I St S

so that the solution of the resulting linear program would vield a feasible
zero one solution. If an X vector were known which was a feasible zero one
solution then it could be used to define an objective for which solving the

constraint set as a linear program would vield the original X

y

vector. Speci

ically, for each X(j,t) with value one in the known solution, set the cor-

responding objective function coefficients to one. Maximize this objective
function subject to (1), (2), and (3), allowing X(j,t) to be continuous.
However, a feasible solution is not known for the above problem so such
an objective function cannot be prespecified; instead we give a procedure which
can learn the appropriate objective function vié parametric linear programming
techniques. The desired outcome of this learning process is either to find an

integer solution defining a schedule completing by time T or to prove no such

schedule exists.

The process begins by setting all objective function coefficients to
zero and attempting to find a feasible solution to (1), (2), and (3) as a linear
program.

If this linear program is found to be infeasible then there is no

schedule which completes by time T, 1If a feasible solution to the linear pro-

gram is found then it is examined to determine if it is integer. If the solution

is integer then no further work is required. If not, then the process of learn-

ing an appropriate objective function which will draw out an integer solutionm,

if one exists, is carried out via a branch and bound search procedure. Struc-

turing the learning process as a branch and bound search procedure makes certain

that if an integer solution exists it will be found, but also if there is no

feasible integer solution then that fact will e proved.

"

The search is carried out by "driving in" or "drivinz out" a variable at

each stage to fix it at one or zero. Variables to be driven in or driven out are

B S L LR TN Y
WO RN SR HE W S LN A S




DM
l- l. .' .
LA

a2t
« s

LA
A‘..l’.n R

“Q

o

PR

fr
C

7

those with fractional values in the current optimal solution to the linear
program. The operation of driving in a fractional basic variable is done >+
setting its objective function coefficient to one and reoptimizing the linear
program as a maximization problem. The operation of driving out a fracticnal
basic variable is done bv setting its objective function coetfficient to minus

one and reoptimizing. The variable driving in process is successful if the wvalue
of the reoptimized linear programming solution is one unit greater than the
previous optimal value. The variable driving out process is successful if the
value of the reoptimized linear programming solution is the same as that of the
previous optimal solution. 1In the case of a variable driven in, the success
criterion means that after reoptimization the variable has reached the value of
one and the value of all other variables previously driven in or out remain
unchanged. In the case of a variable driven out the success criterion means

that after reoptimization the variable has reached the value zero and the values
of any other variables previously driven in or out remain unchanged. A success
in driving in or out means that the fixed variables may form a part of a feasible
integer solution. Failure means that the set of fixed variables cannot form a
feasible integer solution in the way they are currently fixed. This is evidenced
by the fact that failure implies one of the variables to be fixed at zero or one
remains fractional at the optimum even though it's fractional value adversely
effects the optimal solution value.

In order to formalize the driving in and driving out of variables process
into a branch and bound search, some notation is required. Let variable V be
the current target value which the reoptimized linear program should obtain if
the driving in or driving out operation is successful. Let K be the current

number of variables driven in or out. Let ULIST be an ordered list of variables




DR A RN

R

o
L A N

’. ';',\j . by

.
P Yy

w ae ad v 4 Yo WV
M adn 0 e hdn An Ade gl DAn Jeu S ie e Shn i A R e e e hep e g A R A D

e T T LT e T e T T T T e e

X({,t) where LIST(Z) 1is the variable in position ! of the list.
BRANCH AND BOUND SEARCH ALGORITHM

STEP 0 Initialization

Set V<« 0, R« 0, LIST « @
Go to STEP 1

STEP 1 Test for Feasibilitv and Variable Selection

If the current solution to the linear program is all integer se
FEASIBLE « 'TRUE' and STOP. Else find the largest fractional variab X@G,t).
If there are ties break them by selecting the X(j,t) with the largest .. Set
K« K+ 1 and LIST(K) equal to the chosen variable. Go to STEP 2.

STEP 2 Driving in Variables

Set V<« V + 1, Set the objective function coefficient of the variable
LIST(K) to plus one and reoptimize the resulting linear program. If the optimal
solution value is equal to V go to STEP 1. Else go to STEP 3.

STEP 3 Driving out Variables

Set V « V -~ 1, Set the objective function coefficient of the variable
LIST(K) to minus one and reoptimize the resulting linear program. If the optimal
solution value 1s equal to V go to STEP 1. Else go to STEP 4.

STEP 4 Drop Variable

Set the objective function coefficient of the variable LIST(K) to zero.
Remove LIST(X) from LIST Set K+« K- 1. If K >0 go to STEP 5. Else set
FEASIBLE « 'FALSE' and STOP.

STEP 5 Backtracking

If the objective function coefficient of the variable LIST(X) is plus
one, go to STEP 3. Else go to STEP 4,

END.




.

o .

N

T: the algorithm stops at STEP 1, then a feasibdble ‘ateser solution has !

been discoverad wnich gives a schedule completing dv time 7T. I7 it stops ]
)

at STEZ? 4, then the problem has no solution completing bv time T, 1
N

R N
5. PROBLEM EXPANSION q
1

Next this job shop scheduling model and the 3RANCH AND 30UND SEARCH 1
ALGORITHM are incorporated into an algorithm for finding an optimal makespan .
solution. The model and BRANCH AND BOUND SEARCH ALGORITHM provide a method of A
b

o~

proving whether or not there exists a feasible solution completing bv time
Hence the optimal completion time mav be determined bv beginning with anv
feasible schedule and cutting off the horizon incrementallv until an infeasible
horizon is reached. If this horizon shortening procedure is to be efficient,
a good starting upper bound is needed to reduce the number of time horizons
examined.

In order to generate good upper bounds a problem expanding approach is
utilized as follows. Initially, the job shop scheduling problem with only the

first operation of each item is solved. This is a trivial problem since assign-

ing the jobs on the required machines in any order is optimal. At stage =z

the problem Pz of optimally scheduling only the first =z operations on each

item is solved via horizon shortening. The optimal completion time for Pz is R
TZ. In order to find a good upper bound UBZ on problem PZ from which to be-

gin the horizon shortening, the optimal schedule from problem Pz—l is used as

a schedule for the first z-1 operations on each item. Then all of the zth
operations of the items are scheduled by secuentiallv apoending them to the

optimal schedule for Pz-l according to the rule that the operation with the

earliest feasible start time is scheduled next. The variable UBZ is assizned

The

the value of the resulting completicon time of this heuristic schedule.




[ pAmAas 2A O i et bt el At Al Al S AT AL AL
K

W Y N N Y T N T W T VW T AT T, T T T T T T ST e T T T T
. - . . St e . . ' . . . . .

-10-

horizon shortening begins by applying the model to seek a schedule completing

to problem D provides a

bv T =1UB_ - 1. The optimal solution T 1
z : z~ z-1

1

lower bound LBz on problem Pz' Hence if a schedule is found for problem PZ

which completes by LBz =T then no further shortening is necessarv. Let

z-1

S = max s,. When subproblem PS is solved, the optimal completion time
i=1,...,I
for the entire problem is T

g
In order to formalize the problem expanding method define PZ(T) to

be the model of the job shop scheduling problem which includes onlv the first =z

operations of each item and admitting only schedules which complete by time T,

Then the algorithm for finding an optimal makespan solution can be stated as

follows:

PROBLEM EXPANDING ALGORITHM FOR JOB SHOP SCHEDULING,

STEP 1 Initialization

Set z « 1. Solve Pz. Go to STEP 2.

STEP 2 Check for Inclusion of all Operations

If z =3 STOP. The optimal completion time is TS. Else set z « z + 1

and go to STEP 3,

STEP 3 Find Upper Bound and Lower Bound on Current Subproblem

Set LBz « T and determine the heuristic upper bound UBZ. Set

z-1
T « UBz and go to STEP 4.

STEP 4 Determine whether there is a Schedule Completing by T-1

Solve the model PZ(T—l) via BRANCH AND BOUND SEARCH ALGORITHM. TIf
FEASIBLE = "FALSE" set 'I'z +« T and go to STEP 2. Else go to STEP 5.

STEP 5 Horizon Shortening

Set T« T-1, If T = LBz set Tz < T and go to STEP 2. Else
go to STEP 4.

END.

PPy

e % . oa - . AL MMl S A A

4 A A% ata‘e"A M o A RASMTa a4 a £ A& 4 SAmmuy ™ "




: :'.-.'.\;‘:':\'.'.
LIPS

-11-

In the problem expansion solutic nrocess for computation it is
necessary to generate S-1 linear programs in order to solve the S-1 non-
trivial subproblems. Furthermore the computational cost of finding an initial
feasible solution to each linear program via a phase I procedure car. be elimin-
ated by the use of a crash start. The crash start for subproblem Pz is con-
sidered first. Then the method for solving Pz using a single linear program-
ming formulation will be indicated.

Begin the horizon shortening procedure at stage 2z by setting up the
model PZ(UBZ). A feasible solution to PZ(UBZ) is defined by setting X(j,t)
to one for t equal to the start time of operation j 1in the schedule defining
the completion time UBz and zero otherwise. Hence a feasible tableau for
Pz(UBz) car: be obtained by pivoting into solution the variables with value one
in the feasible solution corresponding to the schedule defining UBz' This
crash start can be obtained by N pivot steps.

It is necessary to set up only S-1 linear programs, one for each non-
trivial subproblem Pz’ because in general the model PZ(T-l) can be obtained
from the model Pz(T)' This can be accomplished in either of two ways. One
way is to set the objective function coefficients of the variables X(ni’ti) for
ti =T - d(ni), i=1,...,1 corresponding to operations completing at time T
in model PZ(T), to minus one and reoptimize via a primal simplex algorithm.
Since the objective function is maximization these variables will only appear in
a basic optimal solution if there is no feasible continuous solution which
completes by time T-l. Such a situation will be evident if the optimal value
of the objective function is negative. The second way to obtain model PZ(T—l)

from Pz(T) is to add the constraint




l-_—‘-v‘ L and A8 ANA Suf St g L AL AL SILENS

= e,

N
ALY

.
O

N

Ll N L L . -
o g e a e e e e e Y L . . . . -

-

T x(n.,t.) =0
i=1,...,1 ot

where again £, = T - d(ni). Then reoptimize the current linear program via
a dual simpler algorithm. Either of these methods of ohktaining model PZ(T—I)
from model PZ(T) means that upor obtaining PZ(T—l) one alreadv knows whether
or not the linear program is feasible and if it is feasible, alreadv has a basic
solution with which to begin BRANCH AND BOUND SEARCH ALGORITHM.
6. COMPUTATIONAL EXPERIENCE

The algorithm has been used to solve 44 test problems which had from four
to six machines and from four to eight items. In the thirty five problems for
which results are shown in Tables I - V, every item is processed exactly once
or each machine. The processing order for each item was chosen by a random draw.

Each operstion required a unit time to complete. It should be noted that even

though all operations have unit times the problem is NP hard as long as the

v

number of machines is at least three, see [8]. Unit operation times were used

to hold down the sizes of the linear programs to be solved.

The dimensions of the linear programs depend upon the horizon time T

and the total processing time for each item. For item i the number of variables

required is
n,
i

(T- I d(j) +1) s,
j=b :

i
corresponding to the number of possible starting times item i has. Note that for
an item with a long total processing time relative to T only a few variables are

needed, but for an item with a short total processing time relative to T manv

variables are needed. For item i there are si corstraints of the form of

(1) needed and there are

e e W ~ Ce g e

N '.'\'.:‘\f.-f:!.'.:!'...l':"\(:‘l':-'.t’ n'-f.-'.‘l' e N L Lt et s acatataa

PR N



o,
1

(T - T 4 + D) (s.-1)
:=b i
I7%4
constraints of the form of (2) needed. The number of constraints of the form of
(3) depends on T, the operation time data and the precedence relations. An
upper bound on the number of constraints of the form of (3) is T-M. The memorv
available on the computer used for testing the algorithm limited the testing to

linear programs having at most 350 variables and 400 constraints. The linear

programs for the problems in Tables II, IV and V all usually approached these
limits.

According to the algorithm, a series of models PZ(T) for z=1,2,...,S
must be solved in order to solve an entire problem. Such a model is solved byv
either proving it is infeasible or else by learning a feasible integer solution
for it. For the thirty five problems of Tables I - V, the most common way in
which an infeasible model was shown to be infeasible was by proving that the
linear prograrming relaxation corresponding to the model was infeasible. 1In the
149 subproblems which were proven to be infeasible in order to solve this group
of 35 problems, there was only one subproblem for which the linear programming
relaxation had a feasible solution while the corresponding integer program was
infeasible. In this case tke driving in and driving out operations failed for
the first variable selected. This proved that while a feasible linear programming
solution existed there was no feasible integer progrzmming solution. This oc-
curred in problem 4 of Table V.

For the problems in Tables I - V, the most common way of learning an
integer solution, in a model which contained one, was by carrying out a sequence
of driving in operations, without ever resorting to the driving out operation

or variable dropping. Furthermore, usually fewer than ; variables had to be

MW WN, .‘,-' -. I .- P .-‘.—.., AR PR \..\. TN N NN s e L e e T

Ll




o g > A Jaud i W N R LY TN LT T T TR TR TR T T e e e T .
Ll Sh Ak AL S ACASAS RO Mttt A ad 0b WAL AL NI M DA IAIAIACLE R A -

~14-

driven in before an integer solution emerged. Of all the models solved which
had integer solutions for the problems in Tables I - V, only & models required
the driving out operation and in onlv one model was it actually necessarv to
drop variables and backtrack. The problems in which these operations were re-
quired are indicated in the notes associated with each table.

The CPU times in Tables I - V show that when the number of items is equal
to the number of machines the solution times are usually not long, but when the

number of items exceeds the number of machines the solution time increased

markedly. The long solution times are due to the fact that some of the linear
programs require a large number of pivots t> solve and the linear programming
code which was implemented was not very sophisticated. The long solution times
do nct result from long branctk and bound searches. The largest branch and bound
search tree contained 16 nodes, but most had only 4 or 5inodes.

In the nine prosiems for which résults are shown inhféﬁiévVI each item is
processed on a given machine at most once, but each item mav not need to be
processed on every machine. The processing order for each item is again chosen
at ragdom. The operation times for these problems were chosen at random from
the integers between one and nine. The first seven of these problems were

generated by the juthors' code. The eighth problem is taken from Lenstra ([9]
g

P T

and the ninth problem is taken from Nemeti [12].

For the problems of Table VI every model instance which was infeasible

was proven to be infeasible by showing that the linear programming relaxation
of the model was infeasible. Also for everv model instance which had a
feasible integer solution, an integer solution was learmed bv carrving out a

sequence of driving in operations, without ever resorting to the driving out

e MAm A R A A R A.taxmm S

operation or variable dropping. Again, usually fewer than variables had

124

to be driven in before an integer solution was learned. As with the unit time

q
.
|
|
-
-




ERRECMED ur i dine ik e vkt S A0 AR LA i v A S AR A A Y _‘:—.Y..‘i b N AR A PN N A A TeT T T AT T T T T

-15-

problem the long solution times result from the inefficiency of the linear
programming code and not from long branch and bound searches.
7. CONCLUSIONS

The computational experience presented supports three observations which
provide encouragement in regard to the computational potential of this approach.
First, integer infeasibility of a constraint set defined bv (1), (2), and (3)

is usuallyv equivalent to infeasibility in the linear programming relaxation of
that comnstraint set. Second, when integer solutions to a constraint set defined

by (1), (2), and (3) exist, they frequently are learned by carrying out a se-
quence of consecutive driving in and/or driving out operations on variables.
The operation of dropping a selected variable and backtracking is seldom re-
quired. Third, usually fewer than g driving in or driving out operations need
to be carried out in order to learn an integer solution. Therefore while the
branch and bound search algorithm is, in the worst case, a complete enumeration
method, preliminary computational experience above indicates that for problems

of the sizes considered, the search trees are quite small and hence are not

computationally difficult for the method. In other words, the method given in

this paper has been limited to solving relatively small problems because of the

'53 memory requirements of the resulting linear programming problems that have to be
E solved and not by the computational effort.

In order to determine whether these results will hold up for larger problems,

future work will focus on reducing memory requirements and improving the ef-

ficiency of the linear programming solution method. Work on these problems is
- contemplated from two directions. The first is to study the possibility of re-
e ducing the size of the problem by preprocessing. The number of variables can be
reduced by N if each of the equations of the form of (1) is solved and sub-

stitution is made. A search for redundant :onstraints mav also be implemented.




-16-

The second direction in which improvement will be sought is via the implementation
of the Pivot and Probe Algorithm [13], This is an algorithm which attempts to
take advantage of redundancv in the constraint set to improve efficiencv bv
updating only a relevant subset of the constraints when carrving out a pivot. The
Pivot and Probe Algorithm also reduces memory requirements. This algorithm has
yielded 80 percent reduction in computation time required for randomlv generated
linear programming problems relative to codes which update the full tableau.

If these efforts are able to increase the efficiency of the linear program

solution process and to reduce memory requirements for the algorithms in this

paper tten it will be possible to test them on larger problems.




4
ot

4t

»
-

oo
LA

.

XN

L
ala

HERIIt 12

-

e

TABLE I

NOTES
M=4, I =35, N=20
The processing order was chosen
at random and all operation times are
one. Problem 3 required the
dropping of 4 variables and
4 backtrack steps. No other
problem required variables to be

dropped or driven out

TABLE IT

NOTES

M=4, 1=28, N=32

The processing order was chosen

at random and all operation times
are one. None of the problems
required the driving out operation
or dropping of variables and

backtracking.

A S

e et e e e PR S S
. . - - B e -. M .. . -. - " - . > s - .. ‘~
. T R MR O :‘ R S OGP, P A

PROBLEM CPU TIME
IN SECONDS

1 6

2 4

3 21

4 3

5 4

Avg. 7.6

PROBLEM CPU TIME
IN SECONDS

1 83

2 141

3 840

4 171

5 285

Avg, 304

T e N TS N

Lo L
. R
TR A J




g T TSR w TN g e g e v h g TR T RELE L EE LT LW eV
LM A e are 0 e med b s sl aud ot s i Sl o o/ it R e T i L A

-
N TABLE TII
Y NOTES
e M=35,I=5, N=25 PROBLEM CPU TIME
= IN SECONDS
: The processing order was chosen at 1 32
random and all operation times are 2 2
one. Problem 1 required the 3 10
driving out operation on one variable 4 9
and Problem 7 required it on two 5 35
variables. The remaining problems 6 29
did not require variable dropping 7 20
or driving out. 8 6
9 16
10 16
Avg. 14.5
TABLE IV
NOTES
M=535 F=7, N=35 PROBLEM CPU TIME
IN SECONDS
The processing order was chosen at 1 416
random and all operations times are 2 171
one. Problems 2, 4, and 5 each re- 3 843
quired the driving out operations on 4 1361 ;
one variable. The other problems did 5 261 ;
;
not require variable dropping or ;
Av.g 370.4 :
driving out. .
IR S o W) O A N P e R PR S G G L




LI B A S B B T it AT e ek e At et e AR e e el S e i e A g

19
TABLE V
; NOTES
M=6,1=6, =36 PROBLEM CPU TIME
;:;::'. IN SECONDS
‘h( . The processing order was chosen at 1 67
! . random and all operation times are 2 175
E‘. one. In problem 4 a linear program 3 116
3 in P6 was feasible while the corres- 4 168
L_:,‘ ponding integer program was feasible. 5 137
L-":.: The driving out operation was required 6 132
L.-‘:: for one variable in problem 9., WNo 7 114
f-? ’ other problem required variable drop- 8 3
ping or driving out. 9 395
10 38
Avg. 134.5
TABLE VI
NOTES
M=4 PROBLEM ITEMS OPERATIONS CPU TIMES
IN SECONDS
Processing orders for each item 1 5 18 438
were chosen at random. The pro- 2 5 18 196
cessing times vary between 1 and 3 5 18 8
9. Neither the driving out opera- 4 5 18 174
tion nor dropping of variables was 5 6 22 57
required for any of these problems. 6 6 24 1212
Problem 8 is taken from (8] and 7 6 24 360
problem 9 is taken from [12]. 8 4 13 1297
34

ro

Avy. 386.




TRyt TSN T T W TN TR TR TR T W Tl T T e AT
3 ra A i o Pafiacad aferadit fiare it it it S e e 2 s |
DT s Rt A AL e f'.»"‘f. LA At -.‘T. NEati BRI AN A <. . .
.

_.'.
-

e
7 -t

-
AR -20-

8. REFERENCES

[ 1] Kenneth R. Baker, Introduction to Sequencing and Scheduling, John Wilev

D and Sons, New York, 1974.

i:t ( 2] E. Balas, '"Machine Sequencing Via Disjunction Graphs: An Implicit Enumera-
e tion Algorithm,'" Operations Research 17: 941-957, 1969.

DA

.' [ 3] E. Balas, "Disjunctive Programming and a Hierarchv of Relaxations for

Discrete Optimization Problems,'" Management Science Research Revort
MSRR 492, Carnegie-Mellon Universitv.

:ff [ 4] R. Bellman, A. E. Esogbue and I. Nabeshima, "International Series in

o Modern Applied Mathematics and Computer Science,” Volume 4: Mathematical
" Aspects of Scheduling and Applications, Pergamon Press, Oxford, 1982.

ro-

) - ' . . v . =
:}} [ 51 E. H. Bowman, "The Scheduling Sequencing Problem,'" Operations Research 7(3):
o 621-624, 1959,

s

£ 6] R. W. Conway, W, L. Maxwell, and L. W. Miller, Theory of Scheduling,

Addison Wesley, Reading Mass. 1967,

; ' ."I
a n‘
~—

a2
.
’ ’
—
-~
—

Simon French, Sequencing and Scheduling: An Introduction to the Mathematics
of the Job Shop, Ellis Horwood Ltd., Chichester, England, 1982.

rvor. &

g .:""
.

.. L.
—_—

P

8] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to
the Theorv of NP Completeness, Freeman, 1979.

. [ 9] J. K. lenstra, Sequencing by Enumeration Methods, Mathematical Center Trazt 67
5? Mathematisch Centrum, Amsterdam, 1974.
.- ;

[10] A. S. Manne, "On the Job Shop Scheduling Problem," Operations Research 8(2):
219-223, 1969.

[ .
. [y
4 A.A A mmma A 4 & owo-

-
..

H§ [11] John F.Muth and Gerald L. Thompson (editors), Industrial Scheduling.
Hb Prentice Hall Inc. Englewood Cliffs, New Jersev, 1963.

R

[12) L. Nemeti, "Das Reichenfolge problem in der Fertigungspragrammiersing und
Linearplanung mit logischen Bedigungen,' Mathematika 6(29), 1964, 87-99.

“
4 4 3 5 A s o mmm .. .

b':*'

ﬁi [13] A. P. Sethi and G, L. Thompson, "The Pivot and Probe Algorithm for Solving a :
R Linear Program,' Mathematical Programming, April 1984, .
e 4
Q@ :

[14] A. E. Story and H. M. Wagner, '"Computational Experience with Integer Pro- :
gramming for Jobshop Scheduling," in [11], pp. 207-219. .

—~——
[
-~

{15] H. M. Wagner, "An Integer Linear Programming Model for Machine Scheduling,"”
Naval Research Logistics Nuarterly 6(2), 131-140, 1959.

e T A N A e N O S T S I TP ST PR T ST T N T VoV S S T AP LIS JIRTIAT Wi I S



wryy LY .Y W % % - s * s F T
hadirthali A YRy . - e T e T T . - N

ol L -u ire v B - St S B S Sd
e uh A e o b s et bl ol e el AL SLALALAESARILMER AR

IG .. T eemle tlema Nl T= T Daue ®cen Jaie cn.erec

i ————— ,

f Tt o ta) ' - - - I
i REECRT CCCUMENTATION PAGE LT T,

Lor L7 R e

EEEN s R PR ———— = P——
i €22 NuMBE s Gl ACZELIICHN NQ.. ) RLZ mopN VoAaTALlG NLaALER

., MSRR #500 dnoiidy b :
j¢ TT-% e swenie i S. TVPE 3F MEPORT § FEAICD SVERED
% A Problem Expanding Parametric Programming Method Technical Report ‘
! for Solving the Job Shop Scheduling Problem - April 1984 :
$. PENFOAMING JRG, REPCRAT ~UMBER

i i ; MSRR 500 !
g7 S TEean, s CONTRAGT 3R GRAMT wUMOEZ e,

!  Gerald L. Thompson ( NO0014-82-K-0329 :
! Daniel J. Zawack ~ NR 047-0438 !
T PERFOAMING CRCGANIZATION NAME AND ADOWESS ; 1. AACGRAM JLEMENT, 2IC STT TaLk i

AREA & WORK UNIT NUMBERS

5 Graduate School of Industrial Administration
{ Carnegie-Mellon University |
% Pittsburgh, Pennsylvania 15213 !

112 PrucAT JaTs
Personnel and Training Research Programs ! ;D;'_f 1984
' QOffice of Naval Research (Code 434) ;ﬁ,ﬂ Nu}G'lcf a/;\-s'
Arlington, VA 22217 ; oo

MONITORING aGENCY Nam& &8 AODALESS(I! allierent trom Cantreiling Olttce) 18, SECUMITY CLASS. (of thie :uport)

" CSSNTRCLL NI IFTICE wamd AND ATORESS

VI S

L4

Cade DEC_ASSINICATIO 1/ GoartiurAwinG
1 SCHEDULE

'8 OISTUBUTION STATEMENT (ol Nte Report)

DISTRIBUTION STATEMENT A
Approved for public relecse
f Digtribution Unlimited )

[

1T DISTRIBUTION STATELMENT (af the sdetract eniered in Bleea 20, II ditterent irem Repert)

e, @ s el a

1
; ‘S, SUPS_ cMENMTARY NOTES -

12. XEY WOROS /Contimue on reveres ¢ide il necossary and identily by bdiock anumbder)

voma.

< ome @ ma-

job shop scheduling algorithm, branch and bouhd, zero one integer program
parametric linear programming, problem expansion

Ay

,,.

b e

ABSTRACT rContinue en reverse side | nosvscary ond identity oy bieck mamesr)
A new zero one integer programming mocdel for the job shop scheduling

- problem with minimum makespan criterion IS présented. The algorithm consists
- of two parts: (a) a branch and bound parametric linear programming code for
solving the job shop problem with fixed completion time; (b) a problem ex- .
panding algorithm for finding the optimal completion time. {

Computational experience for problems having up to 30 operations is pre-
sented. The largest problem solved was limited by memorv space, not computa
tion time. Efforts are under wav to -improve—the effieienex—-o+ the algor’ .m!

—— ok
an A 0 reduce 1ts memorv requlrements.
Feaw %75 o h

“
i

al:’l,
8

RAP A
PRAE Y AN

AN

r—

N DO  imm On GF 1 MOV §313°08I0LETE

o $/M 0102-014-6601 "

.} SECUAITY CLASHFICATION OF THIB AAGE /#hen Dace Enieved)
—

Rl
.
.

(IR}
e

e e e AN ‘. .
SIS g WY Wl SAIE WA SO W SOY N et 2.




A -

s a aa

PSRN

a a_a

T U SR S}

P

r'Y




